Penguatan Kapasitas Guru Bahasa Inggris SMP/MTs Kabupaten Magelang melalui Implementasi Deep Learning dan Interactive Teaching

Authors

  • Farikah Universitas Tidar
  • Mimi Mulyani Universitas Tidar
  • Rifki Hamdani Universitas Tidar
  • Mursia Ekawati Universitas Tidar
  • Heru Nur Rohmat D. S. Universitas Tidar

DOI:

https://doi.org/10.35877/panrannuangku4273

Keywords:

pendampingan guru; pembelajaran mendalam; pengajaran interaktif; pembelajaran yang menyenangkan; rencana pembelajaran

Abstract

Kualitas pengajaran bahasa Inggris di jenjang Sekolah Menengah Pertama (SMP/MTs) di Kabupaten Magelang masih menghadapi tantangan, terutama dalam penerapan metode yang mendorong keterlibatan siswa secara aktif sesuai dengan Kurikulum Merdeka. Program pengabdian masyarakat ini bertujuan untuk memperkuat kapasitas guru bahasa Inggris melalui penerapan pendekatan pembelajaran mendalam dan pengajaran interaktif. Program ini dilaksanakan bekerja sama dengan MGMP Bahasa Inggris dan melibatkan serangkaian lokakarya berjenjang—pengenalan konsep, praktik merancang strategi interaktif, pengembangan media pembelajaran yang menyenangkan, dan pendampingan penyusunan rencana pembelajaran (RPP). Sebanyak 49 guru bahasa Inggris berpartisipasi aktif dalam program ini. Hasilnya menunjukkan peningkatan yang signifikan dalam pemahaman guru tentang prinsip-prinsip pembelajaran mendalam, kemampuan mereka merancang media pembelajaran kreatif tingkat A1, dan kompetensi mereka dalam menghasilkan rencana pembelajaran inovatif yang selaras dengan praktik pengajaran interaktif. Hasil ini menyoroti efektivitas pendampingan berbasis praktik dan lokakarya kolaboratif dalam meningkatkan kapasitas pedagogis. Studi ini menyimpulkan bahwa dukungan sistematis dan kolaborasi berkelanjutan sangat penting untuk mendorong pembelajaran bahasa Inggris yang inovatif dan berpusat pada siswa di sekolah menengah.

References

Almufarreh, A., Noaman, K. M., & Saeed, M. N. (2023). Academic teaching quality framework and performance evaluation using machine learning. Applied Sciences, 13(5), 3121.
Asnawan, A., Buana, A. N. H., & Hignasari, L. V. (2025). Redefining teacher competencies in the age of generative ai: a global perspective on pedagogical transformation. International Journal of Teaching and Learning, 2(11), 1276-1294.
Benaoui, A., & Kassimi, M. A. (2021). Using machine learning to examine preservice teachers’ perceptions of their digital competence. In E3S Web of Conferences (Vol. 297, p. 01067). EDP Sciences.
Biggs, J. & Tang, C. (2011). Teaching for Quality Learning at University (4th ed.). Open University Press/McGraw-Hill.
Caena, F., & Redecker, C. (2019). Aligning teacher competence frameworks to 21st century challenges: The case for the European Digital Competence Framework for Educators (Digcompedu). European journal of education, 54(3), 356-369.
Darling-Hammond, L., & Oakes, J. (2021). Preparing teachers for deeper learning. Harvard Education Press.
de-Torres, E., Canaleta, X., Fonseca, D., & Alsina, M. (2024). Automated monitoring of human–computer interaction for assessing teachers’ digital competence based on LMS data extraction. Sensors, 24(11), 3326.
Hadiyah, K. N., Surahmat, S., & El Walida, S. (2025). Teacher Readiness Level In Implementing The Deep Learning Mathematics Approach To Senior High School Students In Batu City. Mathline: Jurnal Matematika dan Pendidikan Matematika, 10(3), 833-846.
Handayani, S. (2016). Pentingnya kemampuan berbahasa Inggris sebagai dalam menyongsong ASEAN Community 2015. JURNAL PROFESI PENDIDIK Ikatan Sarjana Pendidikan Indonesia (ISPI) Jawa Tengah, 3(1), 102-106.
Jiang, R. (2022). Understanding, Investigating, and promoting deep learning in language education: A survey on chinese college students' deep learning in the online EFL teaching context. Frontiers in Psychology, 13, 955565.
Karim, E., Safran, N. A. A., Shuib, N. H., & Azmi, A. (2021). Level of 6Cs global competencies among trainee teachers upon the implementation of pedagogical capacity for deep learning based on Rasch Measurement. International Research Journal of Education and Sciences (IRJES), 5(2), 49-55.
Kartal, M. (2021). Facilitating deep learning and professional skills attainment in the classroom: The value of a model United Nations course. Journal of Political Science Education, 17(sup1), 148-168.
Kayaalp, F., Durnali, M., & Gökbulut, B. (2025). Enhancing Competence for a Sustainable Future: Integrating Artificial Intelligence–Supported Educational Technologies in Pre?Service Teacher Training for Sustainable Development. European Journal of Education, 60(1), e12865.
Kelpsiene, M., & Monkeviciene, O. (2024). Predictors of deep learning and competence development in children aged 5–7 using augmented reality technology. Education Sciences, 14(9), 1024.
Manalu, J. B., Sitohang, P., & Henrika, N. H. (2022). Pengembangan perangkat pembelajaran kurikulum merdeka belajar. Prosiding Pendidikan Dasar, 1(1), 80-86.
Paliwal, M., & Singh, A. (2021). Teacher readiness for online teaching-learning during COVID? 19 outbreak: a study of Indian institutions of higher education. Interactive Technology and Smart Education, 18(3), 403-421.
Prince, M. (2004). "Does Active Learning Work? A Review of the Research." Journal of Engineering Education, 93, 223–232.
Simut, R., Simu?, C., Badulescu, D., & Badulescu, A. (2024). ARTIFICIAL INTELLIGENCE AND THE MODELLING OF TEACHERS'COMPETENCIES. Amfiteatru Economic, 26(65), 181-200.
Siswanto, D., & Yogyanto, N. (2024). Empowering Teacher Pedagogical Competencies through the Implementation of Deep Learning Approach Training. JOELI: Journal of Educational and Learning Innovation, 1(2), 170-179.
Sølvik, R. M., & Glenna, A. E. (2022). Teachers’ potential to promote students’ deeper learning in whole-class teaching: An observation study in Norwegian classrooms. Journal of Educational Change, 23(3), 343-369.
Wang, G., & Wang, Z. (2025). Utilising an Interactive Deep Learning Framework to Enhance the Effectiveness of Intelligent Teaching Practices. Decision Making: Applications in Management and Engineering, 238-255.
Wu, J. (2022). Construction of primary and secondary school teachers’ competency model based on improved machine learning algorithm. Mathematical Problems in Engineering, 2022(1), 6439092.
Yang, L., Wang, Q., Zheng, B., Li, X., Ma, X., & Wang, T. (2024). Assessing Digital Teaching Competence: An Approach for International Chinese Teachers Based on Deep Learning Algorithms. Scalable Computing: Practice and Experience, 25(1), 495-509.
Zhou, Q., Zhang, H., & Li, F. (2024). The impact of online interactive teaching on university students’ deep learning—The perspective of self-determination. Education sciences, 14(6), 664.
Zou, D., Xie, H., & Kohnke, L. (2025). Navigating the Future: Establishing a Framework for Educators' Pedagogic Artificial Intelligence Competence. European Journal of Education, 60(2), e70117.

Downloads

Published

2025-09-09

How to Cite

Farikah, F., Mulyani, M., Hamdani, R., Ekawati, M., & Rohmat D. S., H. N. (2025). Penguatan Kapasitas Guru Bahasa Inggris SMP/MTs Kabupaten Magelang melalui Implementasi Deep Learning dan Interactive Teaching . Panrannuangku Jurnal Pengabdian Masyarakat, 5(3), 139–147. https://doi.org/10.35877/panrannuangku4273

Issue

Section

Articles